#### Alan Perelson, Peter Schuster, Peter Stadler

Paper #: 93-07-048

In order to evaluate the role of idiotypic networks in the operation of the immune system a number of mathematical models have been formulated. Here we examine a class of B-cell models in which cell proliferation is governed by a non-negative, unimodal, symmetric response function $f(h)$, where the field $h$ summarizes the effect of the network on a single clone. We show that by transforming into relative concentrations, the B-cell network equations can be brought into a form that closely resembles the replicator equation. We then show that when the total number of clones in a network is conserved, the dynamics of the network can be represented by the dynamics of a replicator equation. The number of equilibria and their stability are then characterized using methods developed for the study of second-order replicator equations. Analogies with standard Lotka-Volterra equations are also indicated. A particularly interesting result of our analysis is the fact that even though the immune network equations are not second-order, the number and stability of their equilibria can be obtained by a superposition of second-order replicator systems. As a consequence, the problem of finding all of the equilibrium points of the nonlinear network equations can be reduced to solving linear equations.