Kan, Unchitta; Michelle Feng and Mason A. Porter

examining bounded-confidence (BC) models, in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other opinions if they lie within some confidence bound of their own opinion. We extend the Deffuant–Weisbuch (DW) model, which is a well-known BC model, by studying opinion dynamics that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinion when they interact with a neighboring node and (2) break a connection with a neighbor based on an opinion tolerance threshold and then form a new connection to a node following the principle of homophily. This opinion tolerance threshold acts as a threshold to determine if the opinions of adjacent nodes are sufficiently different to be viewed as discordant. We find that our adaptive BC model requires a larger confidence bound than the standard DW model for the nodes of a network to achieve a consensus. Interestingly, our model includes regions with ‘pseudo-consensus’ steady states, in which there exist two subclusters within an opinion-consensus group that deviate from each other by a small amount. We conduct extensive numerical simulations of our adaptive BC model and examine the importance of early-time dynamics and nodes with initial moderate opinions for achieving consensus. We also examine the effects of coevolution on the convergence time of the dynamics.