Oborny, B.,Kun, A.

We applied individual-based simulations to study the effect of physiological integration among ramets in clonal species that live in patchy habitats. Three strategies were compared: (1) Splitter, in which the genet was fragmented into independent ramets; (2) Transient Integrator, where only groups of ramets were connected; and (3) Permanent Integrator, in which fragmentation did not occur, and the whole genet was integrated. We studied the dynamics of spatial spreading and population growth in these strategies separately and in competition. Various habitat types were modeled by changing the density of favorable habitat patches. We found that the spatial pattern of good patches significantly influenced the growth of the populations. When the resource patches were scarce, a large proportion of the carrying capacity of the habitat was not utilized by any of the strategies. It was the Splitter that proved to be the most severely dispersal-limited. But at the same time, it could compete for the good patches most efficiently. The balance between these two contradictory effects was largely determined by the proportion of favorable to unfavorable areas. When this proportion was low or intermediate (up to ca. 50% good), integration was more advantageous. At higher proportions, fragmentation became beneficial. Fragmentation into groups of ramets (Transient Integration) was not sufficient, only radical splitting could ensure a significant selective advantage. Transient Integrators got fragmented according to the spatial pattern of ramet mortality. It was interesting that the enrichment of the area in good sites did not lead to larger fragment sizes. It merely raised the number of fragments. Nevertheless, these small fragments were more similar to integrated genets (in the Permanent Integrator) than to solitary ramets (in the Splitter) in terms of dispersal and competitive ability. This suggests that even a slightly integrated clonal species can be ecologically considered as an integrator.