Cina Aghamohammadi, James Crutchfield, John Mahoney

Paper #: 16-02-005

A system's apparent simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Thus, notions of absolute physical simplicity—minimal structure or memory—at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the “elegance” of competing theories, may be fundamentally subjective, perhaps even beyond the purview of physics itself. It also raises challenging questions in model selection between classical and quantum descriptions. Fortunately, experiments are now beginning to probe measures of simplicity, creating the potential to directly test for ambiguity.

PDF