Stephens, Christopher R.; Constantino Gonzalez-Salazar; Maria del Carmen Villalobos-Segura and Pablo A. Marquet

The characterisation and quantification of ecological interactions, and the construction of species distributions and their associated ecological niches, is of fundamental theoretical and practical importance. In this paper we give an overview of a Bayesian inference framework, developed over the last 10 years, which, using spatial data, offers a general formalism within which ecological interactions may be characterised and quantified. Interactions are identified through deviations of the spatial distribution of co-occurrences of spatial variables relative to a benchmark for the non-interacting system and based on a statistical ensemble of spatial cells. The formalism allows for the integration of both biotic and abiotic factors of arbitrary resolution. We concentrate on the conceptual and mathematical underpinnings of the formalism, showing how, using the Naive Bayes approximation, it can be used to not only compare and contrast the relative contribution from each variable, but also to construct species distributions and niches based on arbitrary variable type. We show how the formalism can be used to quantify confounding and therefore help disentangle the complex causal chains that are present in ecosystems. We also show species distributions and their associated niches can be used to infer standard “micro” ecological interactions, such as predation and parasitism. We present several representative use cases that validate our framework, both in terms of being consistent with present knowledge of a set of known interactions, as well as making and validating predictions about new, previously unknown interactions in the case of zoonoses.