Acerbi, Alberto; Mathieu Charbonneau; Helena Miton and Thom Scott-Phillips

Typical examples of cultural phenomena all exhibit a degree of similarity across time and space at the level of the population. As such, a fundamental question for any science of culture is, what ensures this stability in the first place? Here we focus on the evolutionary and stabilising role of ‘convergent transformation’, in which one item causes the production of another item whose form tends to deviate from the original in a directed, non-random way. We present a series of stochastic models of cultural evolution investigating its effects. The results show that cultural stability can emerge and be maintained by virtue of convergent transformation alone, in the absence of any form of copying or selection process. We show how high- fidelity copying and convergent transformation need not be opposing forces, and can jointly contribute to cultural stability. We finally analyse how non-random transformation and high-fidelity copying can have different evolutionary signatures at population level, and hence how their distinct effects can be distinguished in empirical records. Collectively, these results supplement existing approaches to cultural evolution based on the Darwinian analogy, while also providing formal support for other frameworks – such as Cultural Attraction Theory – that entail its further loosening.