Noble, A. .E.,Karimeddiny, S.,Hastings, A.,Machta, J.

We extend the theory of quasipotentials in dynamical systems by calculating, within a broad class of period-doubling maps, an exact potential for the critical fluctuations of pitchfork bifurcations in the weak noise limit. These far-from-equilibrium fluctuations are described by finite-size mean field theory, placing their static properties in the same universality class as the Ising model on a complete graph. We demonstrate that the effective system size of noisy period-doubling bifurcations exhibits universal scaling behavior along period-doubling routes to chaos.