Sole, Ricard and Guim Aguade-Gorgorio

A promising, yet still under development approach to cancer treatment is based on the idea of differentiation therapy (DTH). Most tumours are characterized by poorly differentiated cell populations exhibiting a marked loss of traits associated to communication and tissue homeostasis. DTH has been suggested as an alternative (or complement) to cytotoxic-based approaches, and has proven successful in some specific types of cancer such as acute promyelocytic leukemia (APL). While novel drugs favouring the activation of differentiation therapies are being tested, several open problems emerge in relation to its effectiveness on solid tumors. Here we present a mathematical framework to DTH based on a well-known ecological model used to describe habitat loss. The models presented here account for some of the observed clinical and in vitro outcomes of DTH, providing relevant insight into potential therapy design. Furthermore, the same ecological approach is tested in a hierarchical model that accounts for cancer stem cells, highlighting the role of niche specificity in CSC therapy resistance. We show that the lessons learnt from metapopulation ecology can help guide future developments and potential difficulties of DTH.