Networks are useful as compact mathematical representations of all sorts of systems. SFI External Professor Mark Newman asks what the large-scale mathematical structures of networks can tell us.

Mathematical measures of network properties such as degree (a measure of average connectivity) and transitivity (a measure of second-order connectivity) are simple, often-used ways of understanding network structure at a local level.

Newman is interested in larger-scale structures of networks with thousands or millions of nodes. He reviews statistical techniques that offer such large-scale insights, as well as potential predictive capabilities.

His presentation took place during SFI's 2014 Science Board Symposium in Santa Fe. 

Watch the video (53 minutes, May 1, 2014)