US Mountain Time
David G. Stork

When Computers Look at Art

Tune in for the live stream on our Facebook Page.

Abstract:  Our cultural patrimony of fine art paintings and drawings comprise some of the most important, memorable, and consequential images ever created, and present numerous problems in art history and the interpretation of "authored" stylized images.  While sophisticated imaging (by numerous methods) has long been a mainstay in museum curation and conservation, it is only in the past few years that true image analysis—powered by computer vision, machine learning, and artificial intelligence—have been applied to fine art images.  Fine art paintings differ in numerous ways from the traditional photographs, videos, and medical images that have commanded the attention of most experts up to now:  such paintings vary extensively in stylecontentnon-realistic conventions, and especially intended meaning.  

Rigorous computer methods have outperformed even seasoned connoisseurs on several tasks in the image understanding of art, and have provided new insights and settled deep disputes in art history.  Additionally, the classes of problems in art analysis, particularly those centered on inferring meaning from images, are forcing computer experts to develop new algorithms and concepts in artificial intelligence.  

This talk, profusely illustrated with fine art images and computer analyses, argues for the new discipline of computer-assisted connoisseurship, a merger of humanist and scientific approaches to image understanding.  Such work will continue to be embraced by art scholars, and addresses new grand challenges in artificial intelligence.

David G. Stork, PhD is a graduate in Physics of MIT and the University of Maryland, and studied Art History at Wellesley College.  He has held faculty positions in Physics, Mathematics, Computer Science, Statistics, Electrical Engineering, Neuroscience, Psychology, and Art and Art History variously at Wellesley and Swarthmore Colleges and Clark, Boston, and Stanford Universities.  He is a Fellow of six international societies and his eight books, 200+ scholarly articles, and 56 US patents have garnered over 82,000 citations.  He is completing Pixels & paintings:  Foundations of computer-assisted connoisseurship (Wiley), which is used in his courses in four departments at Stanford University.

Research Collaboration
SFI Host: 
Jennifer Dunne

More SFI Events